Resource Allocation for Two-Tier RIS-Assisted Heterogeneous NOMA Networks

XU Yongjun1, YANG Zhaohui2, HUANG Chongwen3, YUEN Chau4, GUI Guan5

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2. Department of Electronic and Electrical Engineering, University College London, London WC1E 6BT, UK; 3. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; 4. Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore; 5. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract: Reconfigurable intelligent surface (RIS) as a promising technology has been proposed to change weak communication environments. However, most of the current resource allocation (RA) schemes have focused on RIS-assisted homogeneous networks, and there is still no open works about RA schemes of RIS-assisted heterogeneous networks (HetNets). In this paper, we design an RA scheme for a RIS-assisted HetNet with non-orthogonal multiple access to improve spectrum efficiency and transmission rates. In particular, we jointly optimize the transmit power of the small-cell base station and the phase-shift matrix of the RIS to maximize the sum rates of all small-cell users, subject to the unit modulus constraint, the minimum signal-to-interference-plus-noise ratio constraint, and the cross-tier interference constraint for protecting communication quality of microcell users. An efficient suboptimal RA scheme is proposed based on the alternating iteration approach, and successive convex approximation and logarithmic transformation approach. Simulation results verify the effectiveness of the proposed scheme in terms of data rates.

Keywords: heterogeneous networks; non-orthogonal multiple access; reconfigurable intelligent surface; resource allocation

1 Introduction

Recently, reconfigurable intelligent surface (RIS) as a promising technology has been proposed to improve energy efficiency (EE) and transmission quality by reconfiguring the wireless propagation environment. Particularly, a RIS has a large number of low-cost passive reflecting elements which can reflect the incident signals from the transmitters by changing the phase shift (PS) of the RIS in a passive way. Since the RIS is connected with a base station (BS) by a RIS controller, the reflected signal can be smartly configured to strengthen the desired signal and suppress the undesired signal for meeting the transmission requirements of communication systems.

1.1 Related Work

According to the above advantages of RIS, resource allocation (RA) problems for RIS-assisted networks have been concerned by many scholars. For example, the authors in Ref. [5] proposed a low-complexity iteration algorithm to maximize the spectrum efficiency (SE) by jointly optimizing the beamformer at the BS and the PS of the RIS in a point-to-point RIS-assisted multiple-input single-output (MISO) communication system. But only one user is considered. To overcome the effect of imperfect channel state information (CSI), a weighted sum-rate maximization problem for the multiuser scenario was investigated by jointly designing the active beamforming of the access point (AP) and the passive beamforming of the RIS under perfect/imperfect CSI in Ref. [6], where stochastic successive convex approximation (SCA) was used to obtain the solution. But the minimum signal-to-interference plus-noise ratio (SINR) constraint is not considered, and it fails to meet the required quality of service (QoS) of each user. Considering the same communication network as in Ref. [6], the transmit power and the PS of the RIS were jointly designed in Ref. [7] to maximize the total EE by using an alternat-
The contributions

The RA problem for a downlink RIS-aided heterogeneous NOMA network, where a small-cell BS (SBS) transmits wireless signals to the targeted users whose signals are enhanced with the help of the RIS. The RA problem for such a system is still in its infancy. The contributions of this paper are summarized as follows.

- A two-tier RIS-aided heterogeneous NOMA network is formulated, where a single-antenna SBS transmits wireless signals to multiple single-antenna small-cell users (SCUs) with the assistance of the RIS. For the single-user scenario, the rate maximization RA problem is formulated by jointly optimizing the transmit power of the SBS and the PS of the RIS. For the single-user scenario, the rate maximization RA problem is formulated under the cross-tier interference constraint, the maximum transmit power, and the unit modulus constraint of the RIS. To deal with the non-convex problem, we propose an efficient RA scheme based on a semi-definite programming (SDP) approach and SCA to obtain the suboptimal solution by an alternating iteration manner.

- Simulation results show that the proposed scheme has good convergence and transmission rates.

The rest of this paper is organized as follows. In Section 2, the system model and the single-user RA problem are introduced. Section 3 proposes a multi-user RA scheme for the multiuser scenario. Section 4 verifies the effectiveness of the proposed scheme. Section 5 concludes this paper.

2 System Model and Single-User RA Problem

2.1 System Model

A downlink two-tier RIS-aided HetNet with NOMA is given in Fig. 1, where a RIS with \(M \) passive reflecting units is...
employed to enhance the transmission quality between the SBS and K NOMA SCUs. A macro base station (MBS) serves N MCUs. The SCUs can share the spectrum owned by MCUs via an underlying spectrum way. Since the RIS is developed in interior walls, where the reflected signals from the RIS caused by MCUs can be ignored. A separate wireless control link serves for information exchange between the RIS controller and the SBS, and other required information for implementing the transmit power. Motivated by the works[5 - 7], perfect CSI and continuous phase-shift coefficients are assumed here. For the single-user scenario, defining \(h = \left[h_1, ..., h_M \right]^T \in \mathbb{C}^M \times 1 \), \(g = \left[g_1, ..., g_M \right]^T \in \mathbb{C}^M \times 1 \), \(f = \left[f_1, ..., f_M \right]^T \in \mathbb{C}^M \times 1 \) and \(\phi = \left[\phi_1, ..., \phi_M \right]^T \) as the channel gain from the SBS to the RIS, the channel gain from the RIS to the SCU, the channel gain from the RIS to the MCU, and the reflecting coefficient (RC) of the RIS, where each \(\phi_m = \beta_m e^{j \theta_m} \) comprises an amplitude coefficient \(\beta_m \in [0, 1] \). Similarly to Refs. [5 - 9], a continuous PS coefficient is assumed, e.g., \(\theta_m \in [0, 2\pi] \) and \(|\phi_m| = 1 \). \(g^S \) and \(g^M \) are the channel gains from the SBS to the MCU and the SBS to the SCU. Define \(\Phi = \text{diag}(\phi) \in \mathbb{C}^M \times M \) as the RC matrix of the RIS. Since we aim to obtain the maximum designed signal, the amplitude coefficient is set as \(\beta_m = 1 \) for simplicity. Ignoring signals reflected by the RIS for two and more times, the received SINRs at the SCU and the MCU are

\[
\gamma_{\text{SCU}} = \frac{p |g^T \Phi h + g^S|^2}{P h^T h + \sigma^2},
\]

\[
\gamma_{\text{MCU}} = \frac{p |g^T \Phi h + g^S|^2}{P h^T h + \sigma^2},
\]

where \(\sigma^2 \) represents the noise power at the receiver.

2.2 Single-User RA Scheme

Motivated by the existing works in Refs. [5 - 10], the power allocation and PS ratio under the single-user scenario are jointly optimized by using an alternating iteration approach. However, the solution is just a suboptimal solution. In order to deal with this challenge, we try to get the optimal power allocation and PS solution under a single-user scenario.

Under this special case, we want to improve the transmission rate of the SCU by adjusting the transmit power and PS coefficients in a globally optimal solution way, while the QoS of the MCU is guaranteed. Therefore, the rate-maximization problem of the SCU is formulated as

\[
\max \log_{_2} \left(1 + \gamma_{\text{SCU}} \right) \quad \text{s.t.} \quad C_1: \gamma_{\text{MCU}} \geq \gamma_{\min},
\]

\[
C_2: |\phi_m| = 1, \forall m,
\]

\[
C_3: 0 < p < \gamma_{\max},
\]

where \(\gamma_{\min} \) represents the SINR threshold of the MCU. \(C_3 \) accounts for the fact that each RIS reflecting element can only provide a phase shift, without amplifying the incoming signal. \(C_3 \) denotes the transmit power range of the SBS, and \(p_{\max} \) is the maximum transmit power at the SBS. Since we want to find the optimal \(p^* \) and \(\Phi^* \), the maximum transmit power of the BMS is ignored.

Based on \(C_1 \), the upper bound of \(p \) is

\[
p \leq \frac{P h_{\text{MU}}^T - \gamma_{\min} \sigma^2}{\gamma_{\min} |g^M + f^T \Phi h|^2}.
\]

Based on the monotonicity of \(p \) in the objective function in Problem (3), the optimal transmit power becomes

\[
p^* = \min \left(\max \left(\frac{P h_{\text{MU}}^T - \gamma_{\min} \sigma^2}{\gamma_{\min} |g^M + f^T \Phi h|^2} \right) \right).
\]

To obtain the globally optimal solution, we substitute \(p^* \) into Problem (3), the PS coefficient optimization problem of Problem (3) can be reformulated as

\[
\max_{\Phi} \log_{_2} \left(1 + \frac{A |g^T \Phi h + g^S|^2}{|g^M + f^T \Phi h|^2} \right)
\]

\[
\text{s.t.} \quad C_2: |\phi_m| = 1, \forall m,
\]

where \(A = \frac{P h_{\text{MU}}^T - \gamma_{\min} \sigma^2}{\gamma_{\min} |f^T \Phi h + g^S|^2} \) if \(p^* < p_{\max} \), otherwise \(A = p_{\max} \).

Since the data rate of Problem (6) is in proportion to its SINR, we have

\[
\max_{\Phi} \log_{_2} \left(1 + \text{SINR}(\phi_m) \right) \Rightarrow \max \text{SINR}(\phi_m).
\]

As a result, we can remove the logarithmic operation, Problem (6) becomes a nonlinear fractional programing problem

\[
\max_{\Phi} A |g^T \Phi h + g^S|^2 - \lambda |g^M + f^T \Phi h|^2
\]

\[
\text{s.t.} \quad C_2: |\phi_m| = 1, \forall m,
\]

where \(\lambda \) is an auxiliary variable. Obviously, the objective function of Problem (7) is a strictly continuous and decreasing function with \(\lambda \).

Theorem 1: For any \(\Phi \) and \(\lambda \), \(Q(\lambda) = \max \lambda |g^T \Phi h + g^S|^2 - \lambda |g^M + f^T \Phi h|^2 \) is a decreasing function with \(\lambda \), and \(Q(\lambda) \geq 0 \).

Proof: See Appendix A.

Since \(\phi = [\phi_1, ..., \phi_M]^T \), \(g = \text{diag}(g) \) and \(f = \text{diag}(f) \), Problem (7) becomes
\[
\begin{align*}
&\max \phi^H (A\tilde{g}\tilde{g}^H - \lambda\tilde{f}\tilde{f}^H)\phi + A\left|g_{ss}\right|^2 - \lambda\left|g_{sm}\right|^2 + \\
&\text{s.t. } C_2: \phi_n = 1, \forall m,
\end{align*}
\]

where \(\text{Re} \{ \cdot \} \) denotes the real part of a complex number.

Define \(\tilde{g} = A\tilde{g}\tilde{g}^H - \lambda\tilde{f}\tilde{f}^H \), \(\tilde{h} = A\tilde{g}_{ss}\tilde{g}^H - \lambda g_{sm}\tilde{f}^H \), and \(\tilde{A} = A\left|g_{ss}\right|^2 - \lambda\left|g_{sm}\right|^2 \). Problem (8) becomes

\[
\begin{align*}
&\max \phi^H \tilde{g}\phi + \text{Re} \{ \phi^H \tilde{h} \} + \text{Re} \{ \tilde{h}^H \phi \} + \tilde{A} \\
&\text{s.t. } C_2: \phi_n = 1, \forall m,
\end{align*}
\]

Problem (9) is a non-convex quadratically constrained quadratic program (QCQP) problem\(^{[27]}\), which can be converted into a homogeneous QCQP problem. By introducing an auxiliary variable \(t(t \geq 0) \), Problem (9) becomes

\[
\begin{align*}
&\max_{\phi, t} \phi^H M\phi + \tilde{A} \\
&\text{s.t. } C_2: \phi_n = 1, \forall m,
\end{align*}
\]

where

\[
M = \begin{bmatrix}
\tilde{g} & \tilde{h} \\
\tilde{h}^H & 0
\end{bmatrix}
\]

and \(\phi = [\phi_1, \ldots, \phi_M] \in \mathbb{C}^{(m+1) \times 1} \). But Problem (9) is still non-convex. Note that \(\phi^H M\phi - \text{Trace}(M\phi\phi^H) \). Define \(X = \phi\phi^H \), which satisfies \(X \succeq 0 \) and \(\text{Rank}(X) = 1 \). Thus, Problem (9) becomes

\[
\max \text{Trace}(MX) + \tilde{A}
\]

\[
\text{s.t. } C_2: X_{ss} = 1, \forall m,
\]

\[
C_2: X \succeq 0, \text{Rank}(X) = 1.
\]

By relaxing the rank-one constraint, Problem (12) is a convex SDP problem\(^{[26]}\), which can be efficiently solved by using the convex optimization tool, e.g., SeDuMi\(^{[28]}\). Generally, the solution \(X \) of Problem (12) does not satisfy its rank constraint\(^{[28]}\), namely, \(\text{Rank}(X) \neq 1 \), while the objective function of Problem (12) only serves an upper bound of it. To obtain a rank-one solution, the Gaussian randomization scheme can be used\(^{[26]}\). As a result, an iteration-based RA scheme is summarized in Algorithm 1. The convergence of Algorithm 1 is analyzed in Appendix B.

Moreover, the computational complexity of Algorithm 1 is analyzed as follows. The computational complexity is mainly decided by Dinkelbach’s method. When the convergence precision \(\varepsilon \) and the maximum iteration number \(L_{\max} \) are determined, the computational complexity of the Dinkelbach-based iterative algorithm is \(O\left(\frac{\log(L_{\max})}{\varepsilon^2}\right) \). Besides, during each iteration, the complexity for obtaining \(\phi_n \) by using SeDuMi tool is \(O\left(\sqrt{M + M^2} L \log\left(\frac{1}{\varepsilon}\right)\right) \), where \(L = M^2 + 3M^2 + M \). \(l \) denotes the convergence precision of SeDuMi tool. As a result, the total complexity of Algorithm 1 is \(O\left(\frac{\sqrt{M + M^2} L}{\varepsilon^2} \log\left(\frac{1}{\varepsilon}\right) \log(L_{\max})\right) \).

Algorithm 1. A Dinkelbach-based RA Scheme

1: Initialize the maximum number of iterations \(L_{\max} \), and the maximum tolerance \(\varepsilon \);
2: Set the auxiliary variable \(\lambda = 0 \) and the iteration index \(l = 0 \);
3: repeat (Main loop)
4: Solve the inner loop problem in Eq. (10) for a given \(\lambda \);
5: Construct \(X \) by the Gaussian randomization scheme\(^{[13]}\) to satisfy the rank condition; Obtain \(\phi_n \) by using SeDuMi tool\(^{[40]}\);
6: if \(\left|A\tilde{g}^H\Phi \Phi^H + g_{ss}\right|^2 - \lambda\left|f^H\Phi \Phi^H + g_{sm}\right|^2 < \varepsilon \) then
7: Convergence = \textbf{true};
8: return \(\phi_n, \forall m \), obtain \(\lambda^* \)
9: else
10: Set \(\lambda(l + 1) = \left|A\tilde{g}^H\Phi \Phi^H + g_{ss}\right|^2 - \left|f^H\Phi \Phi^H + g_{sm}\right|^2 \) and \(l = l + 1 \);
11: Convergence = \textbf{true};
12: end if
13: until Convergence = \textbf{true} or \(l = L_{\max} \);

3 Multi-User RA Scheme

Since the single-user scenario is a specific case for practical systems, it is only helpful to analyze system performance, which is too ideal for practical two-tier RIS-aided communication systems. In order to improve system capacity and support massive connectivity, in this section, we extend the special case of Problem (3) to the multi-user NOMA scenario. Assuming that there are \(K \) NOMA SCUs and \(N \) MCUs, the sets are denoted as \(\mathcal{K} = \{1,2,\ldots,K\}, \forall k \in \mathcal{K} \) and \(\mathcal{N} = \{1,2,\ldots,N\}, \forall n \in \mathcal{N} \). The signal of the SBS is \(x = \sum_{k=1}^{K} \sqrt{p_k} x_k \), where \(p_k \) and \(x_k \) denote the allocated power and the signal from the SBS to the \(k \)-th SCU, respectively. Therefore, the signal received at the \(k \)-th SCU is

\[
y_k = g_{ss}^k x + g_{ss}^k \Phi h + h_{ss}^k \sqrt{P} s_n + n_k,
\]

where \(g_{ss}^k \) denotes the channel response from the SBS to SCU \(k \), \(g_{ss}^k \) denotes the channel vector from the RIS to SCU \(k \); \(h_{ss}^k \) denotes the channel coefficient from the MBS to the \(k \)-th SCU; \(P \) and \(s_n \) are the transmit power and signal from the MBS to the
n-th MCU respectively, $n_i \sim \mathcal{CN}(0, \sigma_i^2)$ is the additive white Gaussian noise (AWGN) at the k-th SCU’s receiver with zero mean and variance σ_i^2. The transmission signals of the SBS and the MBS satisfy $E\left[|x_k|^2\right] = 1$ and $E\left[|x_n|^2\right] = 1$.

Assume that the channel coefficients are sorted in the descending order $|\tilde{g}_n^S + g_n^H h^S| \geq |\tilde{g}_n^S + g_n^H h^G| \geq \ldots \geq |\tilde{g}_k^S + g_k^H h^S|$. For any $i < k$, the SINR of SCU k is

$$\gamma_k^{\text{SCU}} = \frac{p_k |\tilde{g}_k^S + g_k^H \Phi h^S|^2}{|\tilde{g}_k^S + g_k^H \Phi h^S|^2 \sum_{i=1}^{k-1} p_i + |h_k^M|^2 P + \sigma_i^2},$$

where the first item in the denominator denotes the interference power from other SCUs, and the second item denotes the cross-tier interference from the MBS to the SCU k. Since the MBS is often far from SCUs, the interference power of the macrocell network can be omitted.

Thus, the total sum rate for all SCUs is

$$R = \sum_{k=1}^{K} \log_2(1 + \gamma_k^{\text{SCU}}).$$

Since we only consider the transmit power optimization problem for SCUs due to the lower priority in spectrum usage, the joint optimization problem of the transmit power of SBS and the transmit power of MBS are beyond the scope of this paper. Thus, we assume that the MBS allocates the same transmit power P to each MCU. Thus, the received signal at the n-th SCU can be formulated as

$$y_n = \sqrt{P} h_n^{\text{MM}} z_n + \sum_{k=1}^{K} \sqrt{p_k} (g_n^{\text{SM}} + f_n^H \Phi h^S) x_k + z_n,$$

where $z_n \sim \mathcal{CN}(0, \sigma_n^2)$ denotes the received AWGN at the n-th MCU receiver with zero mean and variance σ_n^2.

As a result, the SINR received at the n-th MCU is

$$\gamma_n^{\text{MCU}} = \frac{P|h_n^{\text{MM}}|^2}{\sum_{k=1}^{K} p_k |g_n^{\text{SM}} + f_n^H \Phi h^S|^2 + \sigma_n^2},$$

where h_n^{MM} denotes the channel response from the MBS to the n-th MCU, and g_n^{SM} is the channel response from the SBS to the n-th MCU. The first item in the denominator denotes the cross-tier interference from the SBS to the n-th MCU.

Thus, the sum-rate maximization RA problem of the considered RIS-assisted heterogeneous NOMA network becomes

$$\max_{p_i, \Phi} \sum_{k=1}^{K} \log_2(1 + \gamma_k^{\text{SCU}})$$

s.t. $C_1: \Phi_n = 1, \forall m$,

$C_2: \sum_{k=1}^{K} p_k \leq P^{\text{max}}$,

$C_3: \gamma_k^{\text{MCU}} \geq \gamma_n^{\min}$,

where γ_n^{\min} denotes the minimum SINR required by the n-th MCU. However, it is difficult to obtain the optimal solution to Problem (18), since the objective function is non-concave with respect to either p_k or Φ_n. Moreover, C_3 is non-convex due to the coupled p_k and Φ_n. To address this intractable problem, we propose a low-complexity and efficient scheme, which optimizes p_k and Φ_n by leveraging an alternating iteration approach and the logarithmic transformation method, respectively. The details are given in the following.

3.1 Optimizing p_k with Given Φ_n

Based on C_3, we have

$$l_n^\beta = \frac{P |h_n^{\text{MM}}|^2}{\gamma_n^{\min}} - \sigma_n^2 \geq \sum_{k=1}^{K} p_k |g_n^{\text{SM}} + f_n^H \Phi h^S|^2,$$

where l_n^β denotes the interference power limit of MCU n.

As a result, the power allocation subproblem of Problem (18) becomes

$$\max_{p_i} \sum_{k=1}^{K} \log_2(1 + \gamma_k^{\text{SCU}})$$

s.t. $C_2: \sum_{k=1}^{K} p_k \leq P^{\text{max}}$,

$$\tilde{C}_3: \sum_{k=1}^{K} p_k |g_n^{\text{SM}} + f_n^H \Phi h^S|^2 \leq l_n^\beta.$$

It is noted that C_2 and \tilde{C}_3 are linear constraints, but the objective function is nonconvex.

Based on the successive convex approximation for low complexity (SCALE) algorithm in Ref. [32], for any $z > 0$, we have the following bound:

$$\log_2(1 + z) \geq \alpha \log_2 z + \beta,$$

where $\alpha = \frac{z}{1 + z}$ and $\beta = \log_2(1 + z_0) - \alpha \log_2 z_0$ are the auxiliary variables. The relationship is tight at $z = z_0$ and α and β are the approximation constants.

As a result, we have the following sum rate

$$R = \sum_{k=1}^{K} \alpha_k \log_2 \gamma_k^{\text{SCU}} + \sum_{k=1}^{K} \beta_k,$$

which is a lower bound of the sum rate achieved by SCUs. Note that the relaxation is still a non-convex form due to the difference of convex (d.c.) structure.

Defining $\tilde{\sigma}_k = |h_n^{\text{MM}}|^2 P + \sigma_n^2$, with the logarithmic transformation $\tilde{p}_k = \ln p_k, \forall k$, we have the following convex optimization problem.
The sub-gradient updating iteration algorithm can fast converge. The dual variables $\mu(l+1)$ and $\vartheta_n(l)$ will converge to the optimal values μ^* and ϑ_n^*, $\forall n$ as $l \to \infty$. Note that the duality gap for Problem (23) is zero and the solution is unique. As a result, the primal variable p_n^* ($\mu(l), \vartheta_n(l)$) can reach its targeted value $\tilde{p}_n^*, \forall k$.

3.2 Optimizing ϕ_n with Given p_n^*

Now, we perform the optimization over ϕ_n with the fixed p_n^*. Then, Problem (23) is equivalent to

$$\max_{\phi_n} \sum_{i=1}^K \alpha_i \log_e \left(g_i^{SN} + g_i^{SU} \phi_i \right) - \sum_{i=1}^K \beta_i l_i,$$

s.t. $C_i: \sum_{k=1}^K \beta_k \leq p_{\text{max}},$

$$\tilde{C}_i: \sum_{k=1}^K \beta_k \leq l_i^R, \forall n.$$ \hspace{1cm} (23)

Problem (23) is a standard concave maximization problem since the log-sum-exp is convex\(^\text{33}\). Considering the convexity of Problem (23), the closed-form solution of power allocation can be obtained by using the Lagrange dual theory. Thus, the Lagrange function of Problem (23) can be written as

$$L(\tilde{p}_i, \mu, \vartheta) = \sum_{i=1}^K \alpha_i \tilde{p}_i + \sum_{i=1}^K \alpha_i \log_e \left(g_i^{SN} + g_i^{SU} \phi_i \right) - \sum_{i=1}^K \beta_i l_i,$$

$$\sum_{i=1}^K \beta_i - \sum_{i=1}^K \alpha_i \log_e \left(g_i^{SN} + g_i^{SU} \phi_i \right) +$$

$$\mu \left(p_{\text{max}} - \sum_{i=1}^K \beta_i \right) + \sum_{i=1}^K \vartheta_i \left(l_i^R - \sum_{k=1}^K \beta_k \left| g_i^{SM} + f_i^H \phi_i \right| \right)^2,$$ \hspace{1cm} (24)

where μ and ϑ_n are the non-negative Lagrange multipliers.

Based on Karush-Kuhn-Tucker (KKT) conditions, the transmit power is calculated by

$$p_n^* = \left[\frac{\alpha_i}{\mu + \sum_{i=1}^K \vartheta_i \left| g_i^{SM} + f_i^H \phi_i \right|^2} \right]^+, \hspace{1cm} (25)$$

where $\{ x \}^+ = \max \{ 0, x \}$.

Based on the sub-gradient updating method, Lagrange multipliers can be calculated by

$$\mu(l+1) = \left[\mu(l) - d_1(l) \times \left(p_{\text{max}} - \sum_{k=1}^K \tilde{p}_k(l) \right) \right]^+, \hspace{1cm} (26)$$

$$\vartheta_n(l+1) = \left[\vartheta_n(l) - d_2(l) \times \left(l_n^R - \sum_{k=1}^K \tilde{p}_k(l) \right) g_n^{SM} +$$

$$f_n^H \phi_n \right]^+, \hspace{1cm} (27)$$

where l is the iteration number, $d_1(l) \geq 0$ and $d_2(l) \geq 0$ denote the sufficiently small step sizes. When they satisfy the following relationship, we have

$$\sum_{i=1}^K d_i(l) = \infty, \lim_{l \to \infty} d_i(l) = 0, \forall i \in \{ 1, 2 \}.$$ \hspace{1cm} (28)

Thus, we have

$$\phi_n^* \tilde{F} \phi_n \leq \tilde{l}_n^R,$$ \hspace{1cm} (31)

where $\tilde{l}_n^R = \frac{\sum_{k=1}^K \tilde{p}_k - \left| g_n^{SM} \right|^2 \alpha_i \mu}{\sum_{k=1}^K \tilde{p}_k}$ is the equivalent interference level for the n-th MCU. Thus, Problem (29) becomes

$$\max_{\phi_n} \sum_{i=1}^K \alpha_i \phi_i g_i^{SN} + g_i^{SU} \phi_i \left| g_i^{SM} + f_i^H \phi_i \right| \geq y_k, \forall k,$$

s.t. $C_i: \sum_{k=1}^K \beta_k \leq p_{\text{max}},$

$$C_i: \sum_{k=1}^K \beta_k \leq l_i^R, \forall n.$$ \hspace{1cm} (32)

where $y_k \geq 0$ is an auxiliary variable.

Defining $\tilde{g}_i = \text{diag} \left(g_i \right) \tilde{h}$, C_i can be rewritten as
\begin{equation}
\phi^H \bar{g}_i \bar{g}_i^H \phi + 2\text{Re}\left\{ \bar{g}_i^H \bar{g}_i^H \phi \right\} + f_i \leq 0, \tag{33}\end{equation}

where \((\cdot)^*\) denotes the conjugate of a vector and \(f_i = \left| \bar{g}_i^H \right|^2 + y_i \theta_i^H \).

\(y_i \sum_{i=1}^{\hat{y}_i} p_i - \alpha_i p_k \)

In addition, \(C_2\) can be rewritten as

\begin{equation}
\phi^H U \phi = 1, \tag{34}\end{equation}

where \(U \in M \times M\) is a symmetric matrix with elements of zeros, except for \(u_{n,m} = 1\).

Thus, we have

\[
\max_{\phi \in \Phi_n} \sum_{i=1}^{\hat{y}_i} y_i \quad \text{s.t.} \quad \bar{C}_i^H \bar{C}_i \phi^H U \phi = 1, \quad \bar{C}_i^H \bar{f}_i + f_i \leq 0, \quad \bar{C}_i^H \bar{F} \bar{F}^H \bar{F} \phi \leq \bar{I}_n, \forall u_n.
\]

where \(\bar{f}_i = \phi^H \bar{g}_i \bar{g}_i^H \phi + 2\text{Re}\{\bar{g}_i^H \bar{g}_i^H \phi\}\). Problem (35) is a convex optimization problem with the quadratic constraints.

As a result, the Lagrange function of Problem (35) can be written as

\[
L(\phi, y_i, \kappa, \rho, \varphi) = -\sum_{i=1}^{\hat{y}_i} y_i + \kappa \left(\phi^H U \phi - 1 \right) + \sum_{i=1}^{\hat{y}_i} \varphi_i \left(\bar{f}_i + f_i \right) + \sum_{i=1}^{\hat{y}_i} \rho_i \left(\phi^H \bar{F} \phi - \bar{I}_n \right),
\]

where \(\kappa, \rho, \varphi\), and \(\rho\) are the non-negative Lagrange multipliers.

Based on KKT conditions, the solution of \(y_i\) can be obtained as

\[
y_i = \left[\frac{\alpha_i p_k + \sigma \sqrt{\varphi_i \alpha_i p_k}}{\sum_{i=1}^{\hat{y}_i} p_i} \right],
\]

where the Lagrange multipliers are updated by

\[
\varphi_i (l + 1) = \left[\varphi_i (l) + d_3 (l) \times \left[\bar{f}_i + f_i \right] \right],
\]

\[
\kappa (l + 1) = \left[\kappa (l) + d_2 (l) \times \left(\phi^H U \phi - 1 \right) \right],
\]

\[
\rho_i (l + 1) = \left[\rho_i (l) + d_4 (l) \times \left(\phi^H \bar{F} \phi - \bar{I}_n \right) \right],
\]

where \(d_3 (l), d_2 (l), \) and \(d_4 (l)\) are the step sizes. Based on the same approach in Problem (28), the sub-gradient-based iterative method can guarantee the convergence of the proposed algorithm.

Algorithm 2. An Iterative RA Scheme

1. **Input:**
 - \(M, K, N, \mu_{\text{max}}, J_{\text{th}}, J_{\text{th}}^H, \kappa_{\text{th}}, \lambda_{\text{th}}, \mu_{\text{th}}, \alpha_{\text{th}}, \beta_{\text{th}}, \gamma_{\text{th}}\), and \(L_{\text{iter}}\).

2. **Initialization:**
 - \(\alpha_{i, j} = 0, \beta_{i, j} = 0, \gamma_{i, j} = 0, \rho_{i, j} = 0, \varphi_{i, j} = 0, \lambda_{i, j} = 0, \delta_{i, j} = 0, \) and \(\Phi(0) = \frac{\pi}{2} I_W\).

3. **while** \(l < L_{\text{max}}\) **do**
 - **Given** \(\Phi\) update \(p_i, \forall k\):
 1. **for** \(i = 1:L_i\) **do**
 1. Update transmit power \(p_i\) by Problem (26);
 2. Update Lagrange multipliers \(\mu\) and \(\theta\) by Problems (27) and (28);
 3. Update the auxiliary variable \(\alpha_{i, j} = \frac{\gamma_{i, j}^{\text{SCU}} (i)}{1 + \gamma_{i, j}^{\text{SCU}} (i)}\) and \(\beta_{i, j} (i + 1) = \log_2 \left(1 + \gamma_{i, j}^{\text{SCU}} (i) \right) - \alpha (i) \log_2 \left(\gamma_{i, j}^{\text{SCU}} (i) \right)\);
 4. **if** \(\| p (i + 1) - p (i) \|^2 < \varepsilon \) **then**
 1. Obtain the optimal transmit power \(\bar{p} = p (i + 1)\),
 2. where \(p (i + 1) = \left[p_1 (i + 1), ..., p_K (i + 1) \right]^T\), break;
 5. **else**
 6. **end if**
 7. **end if**
 - **end for**
 - **Given** \(p^*, \forall k\) update \(\Phi\):
 1. **for** \(j = 1:L_j\) **do**
 1. Update the auxiliary variable \(y_i\) by Problem (38);
 2. Update the Lagrange multipliers by Problems (39) - (41), respectively;
 3. **Until** \(\| y (j + 1) - y (j) \|^2 < \varepsilon\), where \(y (j) = \left[y_1 (j), ..., y_K (j) \right]^T\); Obtain \(y_i, \kappa, \rho,\) and \(\varphi\).
 4. Obtain the RC matrix \(\Phi\) by solving the SDP problem in problem (42);
 5. **If** \(\| \Phi (j + 1) - \Phi (j) \|^2 < \varepsilon\) **then**
 1. \(\Phi^* = \Phi (j + 1),\) break;
 6. **else**
 7. **end if**
 8. **end for**
 - **until** Convergence = true or \(l = L_{\text{iter}}\).
 - **end while**

9. **Output:** \(p^* \) and \(\Phi\)

In order to solve the PS coefficient, based on a Schur complement, the dual problem of Problem (35) becomes
max γ
s.t. γ ≥ 0,
\[\mathbf{M} \succeq 0, \]
where \[\mathbf{M} = \begin{bmatrix} B_1 & B_2 \\ B_2^* & B_3 \\ \end{bmatrix}, \]
\[B_1 = \kappa \mathbf{U} + \sum_{i=1}^{K} \sigma_i \mathbf{g}_i \mathbf{g}_i^H + \sum_{i=1}^{K} \rho_i \mathbf{F} \mathbf{B}_2 = \sum_{i=1}^{K} \sigma_i \text{Re} \{ \mathbf{g}_i \mathbf{g}_i^H \} \text{, \ and} B_3 = \sum_{i=1}^{K} \gamma_i - \kappa \sum_{i=1}^{K} \rho_i \mathbf{f}_i \mathbf{f}_i^H - \gamma, \]
and γ is an auxiliary variable. Problem (41) is a convex SDP problem and the Slater’s constraint qualification is satisfied[20]. Particularly, an iterative-based RA scheme for the multi-user RIS-assisted heterogeneous NOMA network is summarized in Algorithm 2.

3.3 Computational Complexity

For the multi-user system, the complexity of the algorithm mainly depends on the number of users and the optimization approach. Regarding to Algorithm 2, it involves the inner and outer iterations. The inner layer is used to obtain variables \(\mathbf{p} \) and \(\Phi \) respectively, while the outer layer is taken for alternating iterations. We denote the maximum alternating iteration number as \(L_{\text{outer}} \) and the iteration numbers of obtaining \(\mathbf{p} \) and \(\Phi \) as \(L_i \) and \(L_j \) respectively. There exists a polynomial-time complexity \((K(N + 1))\) to solve \(\mathbf{p} \) by using sub-gradient updating methods. Therefore, its computational complexity is \((K(N + 1)L_j)\). Similarly, the computational complexity of the SDP problem to solve \(\Phi \) is \((\sqrt{M + 2} L \log(1/\epsilon)) \)[28], where \(L = M^2 + M^3 + M^4(M + 2)(M^2 + M + 1) + M^5 \) and \(\epsilon \) is the convergence precision of the SDP problem. Based on the above discussion, the total complexity of Algorithm 2 is \(((K(N + 1)L_i)\sqrt{M + 2} L \log(1/\epsilon)L_j)\).

4 Simulation Results

In this section, simulation results are given to demonstrate the effectiveness of the proposed RA scheme by comparing it with the rate-maximization based RA scheme without RIS[20] which is defined as “the traditional RA scheme without RIS”. A spectrum-sharing small cell is randomly distributed in the coverage area of the macrocell. SCUs are uniformly distributed in the coverage area of their associated SBS. The coverage radii of the macrocell and small cell are 500 m and 20 m, respectively. The distance-dependent path loss model for the large-scale fading is given by \(d_n^{-\alpha} \)[33], where \(d_n \) is the distance between the SBS to the reflecting unit \(m \) of RIS, \(r_k \) is the distance between the RIS and the SCU \(k \), and \(\alpha \) denotes the path loss exponent. The distance between the SBS and the RIS is 10 m. The distance between RIS and the SCU is 5 m. The small-scale fading is considered as Rayleigh fading channel[13]. The stopping criterion for convergence is \(\epsilon = 10^{-6} \). The noise power is \(\sigma^2 = -100 \text{ dBm} \), and \(\alpha = 3 \). The simulation setup is shown in Fig. 2. The detailed parameter settings are shown in Table 1.

4.1 Single-User Case

Fig. 3 depicts the data rate of the SCU versus the transmit power at the MBS. The target SINR of MCU is \(\gamma_{\text{min}} = 2 \text{ dB} \). From this figure, the data rate of the SCU improves quickly as the increasing transmit power \(P \). The reason is that the large
transmit power of the MBS increases the available transmit power from the SBS to the SCU according to the constraint C_{1}. Besides, this figure also shows that the data rate under the proposed RA scheme is larger than that of the RA scheme without RIS, which indicates that the RIS can improve the rate performance in a passive reflecting way. Moreover, the data rate increases heavily with the increasing number of reflecting elements at the RIS, which indicates that a massive number of passive reflecting elements brings better performance improvement.

Fig. 4 shows the data rate of the SCU versus the minimum SINR requirement of the MCU (e.g., γ_{min}). The transmit power of the MBS is assumed to be $P = 20$ dBm. With the increasing γ_{min}, the data rate of the SCU decreases a lot. The reason is that, under the fixed transmit power at the MBS, the allowed transmit power from the SBS to the SCU becomes smaller to avoid less interference power to the MCU. It is noted that as for the achieved transmission performance, i.e., the achieved data rate, the proposed RA scheme is better than that of the RA scheme without RIS.

Fig. 5 gives the allocated power to the SCU versus the number of reflecting elements M under different transmit power of the MBS P. It is observed that the required transmit power of the proposed RA scheme is around 40% lower than that of the RA scheme without RIS under different transmit power P. This demonstrates that the energy consumption can be reduced a lot when the RIS is adopted. Moreover, the received transmit power at the SCU decreases with the increasing number of reflecting elements M. Because larger reflecting elements provide more multi-path interference to the MCU. The available transmit power of the SBS decreases for guaranteeing the QoS of the MCU (namely, cross-tier interference constraint). When the transmit power at the MBS is increased, the available transmit power at the SBS is increased accordingly, since large transmit power at the MBS allows more transmit power to improve the communication quality of SCU via constraint (4).

4.2 Multi-User Case

The numbers of SCUs and MCUs are $K=3$ and $N=2$, respectively. The reflecting elements are $M=4$. Assume that each MCU receiver has the same interference power limit. The maximum transmit power of the SBS is $P^{\text{max}} = 20$ mW, and the interference power limit is $I^b = 10^{-3}$ mW[13].

Fig. 6 shows the convergence performance of the proposed RA scheme. It is observed that the allocated power to each SCU can quickly reach the equilibrium points within eight iterations, which demonstrates that the proposed RA scheme has a good convergence.

![Figure 4. Data rate of SCU versus SINR threshold of MCU γ_{min}](image1)

![Figure 5. Allocated power from SBS to small-cell user (SCU) versus the number of reflecting elements M](image2)

![Figure 6. Convergence of proposed resource allocation (RA) scheme](image3)
Fig. 7 shows the sum rate of all SCUs versus the number of reflecting elements with different SCUs. It is observed that the total rate achieved by SCUs under the proposed RA scheme increases with the increasing number of reflecting elements. Since the RIS can provide more reflecting signals to strengthen the desired signals to SCUs. However, the total rate of SCUs under the traditional RA scheme always keeps stable with the increasing number of reflecting elements M since no RIS is deployed in this scheme. Besides, the total rate of SCUs with a large K is better than that with a small K. The gap of the total rate of SCUs under a small m is larger than that under a large M. Because the interference power among different SCUs is small due to less transmission path, the total rate is decided by the number of users. Thus, there is a big performance gap in the region with small reflecting elements. However, due to the effect of the cross-tier interference constraint, the overall performance of SCUs is limited. It is impossible to unrestrictedly improve the performance with the increasing number of reflecting elements M.

Fig. 8 shows the total rate of SCUs versus the different interference power limit of MCU I_{m}^s. The total rate of SCUs increases with the increasing I_{m}^s. The bigger I_{m}^s means that the MCU can tolerate more harmful interference power from SCUs and RIS. Correspondingly, the SBS allocates more transmit power to each SCU for pursuing a higher data rate. Moreover, the proposed RA scheme with a larger M achieves better performance than the other two cases. The reason is that the RIS can effectively enhance system performance by providing multiple flexible transmission paths.

5 Conclusions

In this paper, we have maximized the total rate of SCUs by jointly optimizing the transmit power at the SBS and PS coefficients at the RIS in RIS-assisted heterogeneous NOMA networks. Specifically, we firstly propose an optimal RA scheme to maximize the transmission rate of the SCU in a single-user scenario, subject to the SINR constraint of MCU, the maximum transmit power constraint of SBS, and the PS coefficient constraint. Then, we design a suboptimal RA scheme to maximize the total rate of SCUs for the multi-user scenario, subject to the sum transmit power constraint of the SBS, the cross-tier interference constraint of each MCU, and the unit modulus constraint of the RIS. The alternating iteration approach and the SCA approach are used to solve the originally non-convex optimization problem. Simulation results show that the proposed RA scheme has a good converge and transmission rate compared with the traditional RA scheme without RIS. In our future work, we will study the joint optimization of beamforming and PS coefficients under the discrete PS constraint and imperfect CSI in a multi-antenna heterogeneous NOMA network with RIS.

Appendix A: Proof of Theorem 1

Based on Problem (7), an equivalent objective function is given by

$$Q(\lambda) = \max_{\nu_h} A \left| g^H \Phi_h + g^{SS} \right|^{-2} g^{SM} + f^H \Phi_h \right|^{-2} \lambda \left| g^{SM} + f^H \Phi_h \right|^{-2} \lambda \right| \left| g^{SM} + f^H \Phi_h \right|^{-2} \lambda \right| \left| g^{SM} + f^H \Phi_h \right|^{-2} \lambda \right| \left| g^{SM} + f^H \Phi_h \right|^{-2} \lambda \right|$$

(A.1)

Assume there are two optimal auxiliary variables λ_1 and $\lambda_2 (\lambda_1 > \lambda_2)$ for the optimal phase shift policies Φ_1 and Φ_2, respectively, then

$$Q(\lambda_2) = A \left| g^H \Phi_2 h + g^{SS} \right|^{-2} - \lambda_2 \left| g^{SM} + f^H \Phi_2 h \right|^{-2} > A \left| g^H \Phi_1 h + g^{SS} \right|^{-2} - \lambda_2 \left| g^{SM} + f^H \Phi_1 h \right|^{-2} > A \left| g^H \Phi_1 h + g^{SS} \right|^{-2} - \lambda_1 \left| g^{SM} + f^H \Phi_1 h \right|^{-2} = Q(\lambda_1).$$

(A.2)
Therefore, \(Q(\lambda) \) is a strictly decreasing function with the variable \(\lambda \). Define \(\Phi' \) as any solution for Problem (7) and
\[
\lambda' = \left| g^u \Phi' h + g^S \right|^2 \left| g^S + f^u \Phi' h \right|^2,
\]
we have
\[
Q(\lambda') = \max_{\lambda' \geq 0} \left| g^u \Phi' h + g^S \right|^2 - \lambda' \left| g^S + f^u \Phi' h \right|^2 \geq 0.
\]
(A.3)

As a result, we have \(Q(\cdot) \geq 0 \). The proof is complete.

Appendix B: Proof of Convergence

According to the algorithm procedure of Algorithm 1, the convergence is determined by the Dinkelbach-based approach. To show the convergence of Dinkelbach’s method, we define \((\lambda(l), \phi_a(l)) \) as the optimal solution in the \(l \)-th iteration, \(\lambda(l) \neq \lambda' \) and \(\lambda(l + 1) = \lambda^* \) as the EE at the \(l \)-th and \((l + 1) \)-th iteration, respectively. We have the following proposition.

Proposition: If \((\lambda', \phi_a')\) is an arbitrary feasible solution of Problem (7), we have
\[
\lambda' = \left| g^u \Phi' h + g^S \right|^2 \left| g^S + f^u \Phi' h \right|^2,
\]
then \(F(\lambda', \Phi) \geq 0 \).

Proof: We first have
\[
F(\lambda', \Phi) = \max_{\lambda' \geq 0} \left| g^u \Phi' h + g^S \right|^2 - \lambda' \left| g^S + f^u \Phi' h \right|^2 \geq 0.
\]
(B.2)

Based on the Proposition, we have \(F(\lambda', \Phi(l)) \geq 0 \) and \(F(\lambda', \Phi(l + 1)) > 0 \) because of \(\lambda(l) \neq \lambda' \) and \(\lambda(l + 1) = \lambda' \). As a result, \(F(\lambda', \Phi(l)) > 0 \) can be rewritten as
\[
F(\lambda(l), \Phi(l)) = \left| g^u \Phi(l) h + g^S \right|^2 - \lambda(l) \left| g^S + f^u \Phi(l) h \right|^2 = \left| g^S + f^u \Phi(l) h \right|^2 \lambda(l + 1) \lambda(l) > 0 \Rightarrow \lambda(l + 1) > \lambda(l).
\]
(B.3)

Since \(\lambda(l + 1) > \lambda(l) \), while \(F(\lambda, \Phi) \) is a strictly decreasing function in \(\lambda \) according to Theorem 1, we can show that with the increase of iterations, \(F(\lambda(l), \Phi(l)) \) can gradually approach to zero, namely \(\lim_{l \to \infty} F(\lambda(l), \Phi(l)) = 0 \). Accordingly, we have \(\lambda(l + 1) = \lambda(l), l \to \infty \). Thus, the Dinkelbach-based approach can guarantee the convergence of the algorithm. The proof is complete.
Biographies

XU Yongjun received his Ph.D. degree (Hons.) in communication and information system from Jilin University, China in 2015. He received the Outstanding Doctoral Thesis of Jilin Province in 2016. He is currently an associate professor with the School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, China. From 2018 to 2019, he was a visiting scholar with Utah State University, USA. He has authored or co-authored more than 100 papers for renowned journals, including IEEE COMMUN SURV TIT/COM/TIT/TC/TIT/CG/LE/L/TC/CL, etc. His recent interests include heterogeneous networks, resource allocation, intelligent reflecting surface, energy harvesting, backscatter communications, mobile edge computing, and UAV communication.

YANG Zhaohui received his Ph.D. degree in communication and information system with the National Mobile Communications Research Laboratory, Southeast University, China in May 2018. From May 2018 to October 2020, he was a postdoctoral research associate with the Center for Telecommunications Research, Department of Informatics, King’s College London, UK. He is currently a visiting associate professor with College of Information Science and Electronic Engineering Zhejiang Key Lab of Information Processing Communication and Networking, Zhejiang University, China and also a research fellow with the Department of Electronic and Electrical Engineering, University College London, UK. He is also a co-editor for the IEEE Communications Letters, IET Communications and EURASIP Journal on Wireless Communications and Networking. He was an exemplary reviewer for IEEE Transactions on Communications in 2019 and 2020.

HUANG Chongwen (chongwenhuang@zjnu.edu.cn) obtained his B.Sc. degree in 2010 from Nankai University, China, and the M.Sc. degree from the University of Electronic Science and Technology of China in 2013, and Ph.D. degree from Singapore University of Technology and Design (SUTD). From Oct. 2019 to Sept. 2020, he is a Postdoc in his mother University SUTD. Since Sept. 2020, he joined Zhejiang University as a tenure-track young professor. Dr. HUANG is the recipient of the IEEE Marconi Prize Paper Award in Wireless Communications, and IEEE ComSoc Asia-Pacific Outstanding Young Researcher Award in 2021. He has served as an editor of IEEE Communications Letters, Elsevier Signal Processing, EURASIP Journal on Wireless Communications and Networking and Physical Communication since 2021. His main research interests focus on holographic MIMO surface-reconfigurable intelligent surface, RIS/6G wireless communication, mmWave/Terahertz communications, deep learning technologies for wireless communications, etc.

YUEN Chau received his B.Eng. and Ph.D. degrees from Nanyang Technological University (NTU), Singapore in 2000 and 2004, respectively. He was a Post-Doctoral Fellow with Lucent Technologies Bell Labs, USA in 2005, and a visiting assistant professor with The Hong Kong Polytechnic University, China in 2008. From 2006 to 2010, he was with the Institute for Infocomm Research (I2R), Singapore, where he was involved in an industrial project on developing an 802.11n Wireless LAN system and participated actively in 3Gpp LTE and LTE-Advanced (LTE-A) standardization. Since 2010, he has been with the Singapore University of Technology and Design. He was a recipient of the Lee Kuan Yew Gold Medal, the Institution of Electrical Engineers Book Prize, the Institute of Engineering of Singapore Gold Medal, the Merck Sharp and Dohme Gold Medal, and twice a recipient of the Hewlett Packard Prize. He is a fellow of IEEE.

GUI Guan received his doctoral degree in information and communication engineering from University of Electronic Science and Technology of China in 2012. Since 2015, he has been a professor with Nanjing University of Posts and Telecommunications (NJUPT), China. His recent research interests include artificial intelligence, deep learning, non-orthogonal multiple access, wireless power transfer, and physical layer security. He received the IEEE Communications Society Heinrich Hertz Award in 2021 and Highly Cited Chinese Researchers by Elsevier in 2020. In addition, he served as the IEEE VTS Ad Hoc Committee Member in AI Wireless, Executive Chair of VTC 2021-Fall, Vice Chair of WCNC 2021, TPC Chair of PHM 2021, Symposium Chair of WCSP 2021, and General Co-Chair of Moshmedia 2020.